CSCI 3100

Greedy Alg

Announcements -HW2 is back bgrades on Blackboard please double check -HW3 IS UP due in 1 week - Midterm: Fri, Oct. B (not 20th)

Huffman Codes - the idec:

We would like to transmit into using as few bits as possible.

What does ASCII do? Sbits per character (2) 28 = 256 letters Fixed length encoding How can we do befor? common characters should use feuer bits

Prefix-free codes

An unambiguous way to send information when we have characters not of a fixed length.

Key: No letter's code will be the prefix of another.

Encode: BAN - 100011

Gool: Minimize Cost la here, minimize total length of encoded message: Input: frequency counts f[1...n] char i has freq. f[i] Compute: Tree T, with i's placed at leaves $cost(T) = \sum_{i=1}^{m} f[i] \cdot depth(i)$ depth of i

To do this, we'll need to use the array f:

This sentence contains three a's, three c's, two d's, twenty-six e's, five f's, three g's, eight h's, thirteen i's, two l's, sixteen n's, nine o's, six r's, twenty-seven s's, twenty-two t's, two u's, five v's, eight w's, four x's, five y's, and only one z.

If we ignore punctuation of spaces (just to keep it simple), we get:
 A
 C
 D
 E
 F
 G
 H
 I
 L
 N
 O
 R
 S
 T
 U
 V

 3
 3
 2
 26
 5
 3
 8
 13
 2
 16
 9
 6
 27
 22
 2
 5
4 Which letters should [over)?

(ie: How to be greedy?) Put least frequent at bottom.

Huffman's alg: Take the two least characters. frequent Merge them in to one li which becomes a new "leaf": А С D Е F G Н Ι Ν 0 R S U W Х Y Ζ 3 2 27 22 3 2 26 5 3 8 13 16 9 6 2 5 8 4 5 1 N 0 16 9 I 13 4 S Т 27 22 Ð 6 u

Example (ort):

А	С	Е	F	G	Н	I	Γ	Ν	0	R	S	Т	U	V	W	Х	Υ	DZ
3	3	26	5	3	8	13	2	16	9	6	27	22	2	5	8	4	5	3

The tree:

A Huffman code for Lee Sallows' self-descriptive sentence; the numbers are frequencies for merged characters

Α	C	D	E	F	G	Н	I	L	Ν	0	R	S	Т	U	۷	W	Х	Y	Ζ
3	3	2	26	5	3	8	13	2	16	9	6	27	22	2	5	8	4	5	1

If we use this code, the encoded message starts like this:

1001	0100	1101	00	00	111	011	1001	111	011	110001	111	110001	10001	011	1001	110000	
Т	Н	I	S	S	Е	Ν	Т	Е	N	С	Е	С	0	Ν	Т	Α	

How many bits?

char.	A	С	D	Е	F	G	н	Ι	L	Ν	0	R	S	т	U	V	W	Х	Y	Z
freq.	3	3	2	26	5	3	8	13	2	16	9	6	27	22	2	5	8	4	5	1
depth	6	6	7	3	5	6	4	4	7	3	4	4	2	4	7	5	4	6	5	7
total	18	18	14	78	25	18	32	52	14	48	36	24	54	88	14	25	32	24	25	7

∑f[i]·depth(i) Total IS = 646 bits here

How would ASCII do on these 170 letters

170 ×8

Thm: Hutfman codes are optimal: they use the facest # of bits possible.

pf: Greedy-so how to Start?

Contradiction - compare ours to some other optimal.

Lemma: Let x + y be 2 lest common characters. There is an optimal tree in which x y are siblings and have largest depth. pt: Spps not: Take opt free T, where X + Y are not siblings at deepest levet. Let a +b be T's deepest siblings. x or the 500 is in here 500 Create T' by Swapping X with a

Pf: (of then that Huffman codes are optimal) Induction on the # Base case: N=1 or 2 0 60 V IS: Take f[...n], WLOG assume f[] = f[2] are least frequent. Create f[3.0n+1] where f[n+1]= f[1]+f[2]. By IH, Huffman tree T' OF F[3...nt] must be a best possible tree.

Implementation: use priority queue

