
CSQ 3100

SSSP font)

Today
* offa hours today

-

Monday : sign up for

Friday HW slot

Netw : Shortest paths
Goat : Find shortest path

from S to V
.

we 'll think directed
,
but

really could do undirected
who negative edges :

.y°→naffMotivation
-

maps
- routing

Usually ,
to solve this

,
need

to solve a more general
problem :

Find

shortest paths from

sverpex.ae#o@ter_@

Called the single - Source @
shortest path Tree .

sssp

8meno1= :

- Why a tree ?

to
-

Negative edges ?

(initially , assume none)

Important to realize :

MST # SSSP

s
'

→

*

Why ? SSSP is rooted
& directed

- SSSP for everyvertex

(these are different !)

Company a SSSP

÷Ford 1956 & Pantty 1957)
Each vertex will store 2

values .

(Think of these as tentative
shortest paths)

- dist Cu) is length of
tentative shortest s→v

Patfor a ef don't have an

option yet)
- Preda) is the predecessor

of v on that tentative
path sn > ✓

(or NULL if none)
A

Initially :

127 f#←¥t¥ftj%@6AoS • 15 8 / 4
a

t

posthaste
"g7qT

We say an edgeat is tense
if dist (a) + w(u→v) < data)

Udistk

)

7•\#e€s@s.v
•

Fed,stMIf u→v is tense :

use the better path !

So
,
relax :

Algorithm : 1 Dantzig

Repeatedly find tense
edges a relax them .

When none remain
,the Preda) edges form

the SSSP tee
.

To do : which "

bag
" ?

.

Dijksl=E59)
(actually Leytorek et al

'

57
,

Pantzy
' 58)

Make the pay a priority
queue :

Keep
"

explored
"

part of

the graph ,
S

.

Initially ,
S={ s } + disks)=O

While Stv {a " others Null a a)

Select node vets with
one edge from S to ✓

with "

[min dist (a) + w(u→v)
e=Cu,v) ,

UES

Add v to S
,
set

data

)tprdk)

Picture →

is

1

, it
"

Correctness
Thm : Consider the sets at

any point in the algorithm .

For each ues
, the distance

dist (a) is the shortest
path distance
(so pred (a) traces a

.

shortest path) .

: Induction on 1$:

those:$ =L ✓
d G) = 0

.

T¥ : Claim holds when lskkt .

II. Consider when ISKK
,

& Iwas added together .

Let e=u→v into v getting us

to v .

me
.

a⇐€⇒nq
→

✓

~o-#@Claim : any other s→× path
where × ¢5- ✓ is longer
than s→u→eV

On any s → X path ,
some

edge left set S
.

Portion of s→× path up to1st edge leaving was considered
when I added u→v

.

⇒ that portion of s→×
wasn't Chosen

,
So

It was > data) tale)
.

so no other peks to v

Could beshorksr-
⇒ S is best

.

Back to implementation -

run time '

.

For each v ES
, could check

each edge + compute

distantwedruntime ?
w(* → x)

Ocmn)
worse)

Belter : a heap ! of vertices

When

I
is added to S :

- look at v 's edges and
← Oclogn)

either insert W with key
last (v)tw(v→w)

or update w 's key ,Afdistcv)tw(v→w) beatsOagangrtentone

Runtime :

- at most m Change key
operators in heap

- at most n inserts) removes

O(m1og#

What about negate edges ?

Bellmon-fordl.SI(Actually ,
stumble 155)

Key : use dynamic
programming

to force a path to use
each edge at most once

.

Notes cover 2 ways to
formalize this :

←n←mO(mn)

↳ detects (but doesn't
work) negative cycles

←
waffle
cycles

(more in notes . . .)

