
03100

MST
,
shortest

path trees GSSP )



Announcements
- next HW - due next

Friday ,
oral grading

- Midterm : 2 weeks from

today



Lastly : MST

Key idea : for any vertex cut
St V - S

,
the smallest

edge between S - VJ will
be in the MST

.

Boruvka
's ( or Sohn 's ) algorithm :

- safe
Add allstunedges for
each component left in G

.

Recurse
.



More precisely :

- count components of G using

drFIaB¥t¥§

,
label each

vertex if its component #

while ( # components
> D:

- T how many iterations ?

compute array S[ 1.  on ]
,where S[i] = min weight{ Eodmspeomnytoneendpoint in(↳ FE.de#.neIg&n.E*ir

:

0( m ) - if not
, check if w(uD

- beats current S[ labeled ]
or Sflabecv ) ]



Rntne-
:

how many iterations ?

0>-00>-0t0*0
0*0 0*0

§ worst case
,
# components

divides by 2

In )±T( E) + 1

(One iteration reduce
# Comp by half )

# rounds OGog.n)_
Tott : O(mlogn)_



Other algorithms : ( Pnm )
Grow a single T :

start from any vertex ,&
set T= vertex

while H= n :

find safe edge from T
to V - T + add

( Really Jarnik 's from 1929 )

.

How to implement ?
heap !



Primghar KK
-

"

log x
"

= y log
x

Fep
leap

← extract Min

[
,

'ocgogm
,

to

Runtime
-

"

If heap is size m
,

040g m ) ±0(log no)
= Oaog n )

each vertex
,

v
,gets added .

dcv ) times :

§ dlvtbgn = Ign ( Eda )
=0(m kgn )



Kruskalisalgtlm ( 1956
,
motvaled

by Boruvka )
Scan all edges in

increasingorder .

If edge is safe , add it
.

implementation
.

.

A bit more complex - uses

Union . Find data structure

( more to come ... )



Netw : Shortest paths
Goat : Find shortest path

from S to V
.

we 'll think directed
,
but

really could do undirected
who negative edges :

.y°→naffMotivation
-

maps
- routing

Usually ,
to solve this

,
need

to solve a more general
problem :

Find

shortest paths from

sverpex.ae#o@ter_@

Called the single - Source @
shortest path Tree .

sssp



8meno1= :

- Why a tree ?

He
-

Negative edges ?



Important to realize :

MST # SSSP

s
'

→

*

Why ? SSSP is rooted
& directed

- SSSP for everyvertex

( these are different ! )



Company a SSSP

÷Ford 1956 & Pantty 1957 )
Each vertex will store 2

values .

( Think of these as tentative
shortest paths )

- dist Cu ) is length of
tentative shortest s→v

Patfor a ef don't have an

option yet )
- Preda ) is the predecessor

of v on that tentative
path sn > ✓

( or NULL if none )
A

Initially :

127pH#¥P%%86AoS • 15 8 / 4
a

t

posthaste
"g7qT



We say an edgeat is tense
if dist (a) + w(u→v ) < data )

Udistk

)

7*4s@s.o.v
•

Fed,sHDIf u→v is tense :

use the better path !

So
,
relax :



Algorithm :

Repeatedly find tense
edges a relax them .

When none remain
,the Preda ) edges form

the SSSP tee
.

To do : which "

bag
" ?

.



Digested59 )
( actually Leytorek et al

'

57
,

Pantzy
' 58 )

Make the pay a priority
queue :

Keep
"

explored
"

part of

the graph ,
S

.

Initially ,
S={ s } + disks )=O

While Stv {a " others Null a a)

Select node vets with
one edge from S to ✓

with "

min dist (a) +  w(u→v )
e=Cu,v ) ,

UES

Add v to S
,
set

data

)tprdk)

Picture →





Correctness
Thm : Consider the sets at

any point in the algorithm .

For each ues
, the distance

dist (a) is the shortest
path distance
( so pred (a) traces a

.

shortest path ) .

# : Induction on 1$ :

the :



II : Spps claim holds when
ISKK - I

,

If : Consider 1st k :

algorithm is adding
some v to S



Back to implement ton -

run time '

.

For each v ES
, could check

each edge + compute
D[v]t wed

runtime ?



Belter : a heap !

When v is added to S :

- look at v 's edges and

either insert W with key
last ( v )tw(v→w )

or

,¥Pd8¥a¥swFa'w) beatsCurrent
one

Runtime :

- at most m Change key
operators in heap

- at most n inserts ) removes


