
03100

BFS
,

MST

tnnouncnb
- HW due today

- Next HW : oral grading ,end of next week
- Midterm :

Wednesday
October 18

review on Monday in

Class

Last time
-

:

- Graph representations
- Graph traversals : DFS

Idea : determine

Connectivity - can we

reach vertex u from
vertex v ?

(We're doing undirected
,but all Can be modified

for directed - usuallyjust by making sure

edge lists have only
outgoing edges .)

Pseirdocode : two versions

£
"

on

. ,

Ocmtn)
total

Really , building a

"

tree "
:

÷¥¥Iii¥iI¥E¥÷
-wvalg Va

Vs °

General traversal strategy :

in DFS ,bg= stack

Q_ : Can we use a different
"

bag
"

?

- queue

BFI : use a queue
breadth frstseooh

=@
queue

Q

- Q Ofnth)

- Q

"

distance
" traversalv.tn- Vi •¥¥j:#"

4*4
Vs

yg
B

/ ¥ ¥ ovg

V

3Tu
,

BFS vs
.

DFS

÷
Both can tell if 2 vertices

are connected

- Both can be used to detect
cycles .

How ? If revisit an edge ,
must

have some cycle
- Both run in OCV + E) = Ocntm)

time .

Difference
-

:

"

long - thin
"

" bushy
"

Dff : A treeis a maximal

acyclic graph , alwayswith n - I edges .

(PFS + BFS can both be(used to get trees .)

DI : A competent of a

graph is a maximal
Connected subset of 6

.

a. ##
3 components

Newselting : a weighted graph

A graph G= (YE) together
with a weight function

µ
w : E → R that gives€4

aedyeeishttyohegzenreaoh

In this setting , findingshortest paths is much
more interesting !

We'll start with a more
basic question :

What is the best tree
contained in the graph ?

acyclnia$ minimum

Robbin : Minimfnemespanmg

Find a set of edges
which connects all

vertices & is assmall
as possible .

Application : obvious

strategy:

- We 'll start by assuming edge
weights are unique :

so w@jtwCeDVe.e ' EE

How to get started ?

safe**
' '

tE#* "

Idf : Choose Smallest

edge .

(greedy !)

Intermediate
Now suppose we have a portalMST - a forest

.

useless

⇒
Toy⇐ftp.t#*tEsae

Belted Add min edgeif not forming a

cycle .

Leena : Let S be anysubset of V (t ¢ or V) .

Let e be the edge of
minimum weight between
S and V - S

.

→ Then e is in any
MST of G

.

G vs
¥

EO¥¥*Qe
'

Suppose e is riot in MST
.

Let @be MST not
Containing e

.

Some edge of T must
leave 'S

,
say e

'
.

pf cont

÷
X Y

0*0Prove T -

e
'

+ e is better :

- minimum is Clear :

w(e) < w(e ')

T was a tree : fun ,
there

was a path in T from utov .

If palh didn't use e
'

, still
there .

If it did : let e- xy .

Use utox path ,
+ e

,
+ y to v path.

so Fette is 5h11 atee
. By

A bit further Take a forest F :

-

:

Define a safe edge for
any

component of F as The
minimum weight edge

with only one endpoint
in that component .

A useless edge is one

not-nF a with both

endpoints in the same

component .

Note : prior lemma Says
any safe edge

Can be added to
the MST !

Algorithm-
Start with h vertices

.

Compute the safe edges .

Add them .

Recuse on new forest .

Example:

This is Boruvka 's algorithm,from 1926
.

(Also others - often called
Sohn 's algorithm)

Pseudo code :

Essentially
-

:

Find min nbr for each vertex
.

,
Label each Component :

use DFSBFS

€dmanddedggepkaugt
repeat

Runtime :

Tort edges (once) :

At eachstage , get
Yz many components
(worst case).

stages :

Tk) =T(E) + 1

G Oaogn) stages

{§ Ofniogn)
algorithm

Other algorithms :

prim 's algorithm : add a

safe edge ,
one at a

time

(Really Jarriik 's from 1929)

-

How to implement ?

