

Today: Graphe

Announcements

- Boeing scholarships

-HW due Monday

Graphs

A graph G= (V, E) is an ordered pair of 2 sets:

V= vorhces = ZV1, V2, V3, V4}

E=edges = 2 24, 427, 242, V3, ... }

Why? (my fevorite!)

They model everything!

Examples

-social network

-roads

- connectivity - sensor nework

- communication

Dms cont: The degree of a vertex, d(v), is the number of adjacent edges. A path P=V, ..., VK IS G Set of vortices with ZVi, Vi+13 E E $(or (v_{i}, v_{i+1}) \in E \mid f directed)$ A path is simple if all vertices are distinct A cycle is a path which is simple except vi=VK.

Lemma: (degree-sum formula) Z d(v) = 2/E/ VEV DF: degrees pF: of all vortices Consider 1 edge: has 2 vertices in is connected to (> each edge contributes +2 to sum on left side (= 2 E B Why?

Representing grephs

How do we make this data structure?

-arrays or lists -matrix More options.-

Adjacency (or vertex) lists:

 V_1 V_{2} V_5 $V_2 \stackrel{!}{\cdot} V_{1,j} \stackrel{!}{V_{3,j}} V_5$ V2 V_3 : V_2 , V_4 , V_5 J. e Vy ? VS VSi V4 Size: $\frac{1}{MO(n+m)}$ Lookup: Time to check if V:+V; $\mathcal{O}(n)$

Implementation: More buried data structures! Could use: linted to assume array Cissues of inserbor, sortang, ...

Adjacency Matrix

directed: use whole metrix

 $s_{pace}: \mathcal{O}(n^2)$ check $nbr: \mathcal{O}(1)$

Which is better? Depends!

	Adjacency	Standard adjacency list	Adjacency list
	matrix	(linked lists)	(hash tables)
Space	$\Theta(V^2)$	$\Theta(V+E)$	$\Theta(V+E)$
Time to test if $uv \in E$	O(1)	$O(1 + \min\{\deg(u), \deg(v)\}) = O(V)$	<i>O</i> (1)
Time to test if $u \rightarrow v \in E$	O(1)	$O(1 + \deg(u)) = O(V)$	O(1)
Time to list the neighbors of v	O(V)	$O(1 + \deg(v))$	$O(1 + \deg(v))$
Time to list all edges	$\Theta(V^2)$	$\Theta(V+E)$	$\Theta(V+E)$
Time to add edge uv	O(1)	O(1)	$O(1)^{*}$
Time to delete edge <i>uv</i>	<i>O</i> (1)	$O(\deg(u) + \deg(v)) = O(V)$	$O(1)^{*}$

Im: - G is connected if Yu, v, there I path from u tov - The distance from u to v, d(u,v), is equal to the # of edges on the minimum u,v-path (graphs are unweighted) 1 Luir FCO 2 (a)) V d(x, y) = 2

Algorithms on graphs

Basic 1st question: Given any 2 vertices, are they connected? Also: what is their distance?

How to solve?

BFS

DFS

Suggestion ! Suppose we're in a mate, Beaching for something. What do you do? Depth FS: go left until revisit back up + try vert leftmost s.

General traversal Strategy

 $\frac{\text{TRAVERSE}(s):}{\text{put } s \text{ into the bag}}$ while the bag is not empty
take v from the bag
if v is unmarked
mark vfor each edge vwput w into the bag

