
CSCI 3100

Flows
, pt 2



Announcements



More formally :

⇐
en a directed graph with
two designated notices ,

s and t
.

Each edge is given a capacity de ) .

↳ maximum amount that
Assume can be sent along it

.

-

:

- No edges enters

- No edges leave t
. If,•YI

-

Every CG ) EZ
.

K
.

in integers

Goat : f : E→2 it 028M£.IO#FtgeEyfG)

Max flow : And the most we

can ship from s to t
without exceeding any
capacity

Min out : And smallest set
of edges to delete in

order to disconnect set



( Ford - Mnkrson '

54
,
Elias - Feinstein%± "

The max flow ✓ a# " non #

=
min
cut value

Last time :

any flow ± a_nyout

value (f)
why ?

qq.at#0-3¥Cost ( SF )

eo§*s4e5



today :

- An algorithm for max
flow

Continued from lasttne )

The pf of correctness
will prove F # thm



Keyf :

Residual network Gf :

Augmenting a path :



Algorithm : Ford - Fulkerson
=

( 1956 )
MAXFLOW (G) :

Let ffe )=O initially He

Construct Gf =G

o.int#*EEEaat.Et*FEintiE9t@a
return f

Last time :

Leinma : At each stage ,
flow &

residual values are

integers .



ff '

is after augmenting )

Lemay : In each iteration ,

Value ( f ' ) > value ( f )
.

In each Heaton
,
value improves

¥ "

found a path P in Gf
This P had some

bottleneck edge .

By prior lemma
, that

edge was an integer
+ was positive

value ( f ' ) increased

by this bottleneck
amount :

Ge
yoy , .¥°\.5 °

Thate on this edge ...

fvaluecf ' ) = value (f)
⇒

t

t bottleneck (P )



Gjatfeo
who'K.to#*sskatIahons

,

where f* is a maximum flow

( Sina gets larger

by
at least 1

¢ stays
an integer)

¥ Runningtime is :

Octet . m )

OC Cm )
T

C : { all capacities

OCE'm ) de )
↳ q
edsefgst



Note : This is the best we

can do !

@

Eyes
@

#
Getty

's

worst path :
°I¥gK°

To do better
,
need to consider

how to choose a
"

good
"

augmenting path .



thm : The F- F algorithmterminates With a maximum

flow
.

To prove this
,

we 'll use cuts !

Fact : For any ST cut
,

Tvaue(f) =

fatted
-

fin
(s )

=@%0*0←o¥450¥ "

value (f) = fays )
Know f%)=O

since s has no

incoming edges
⇒ value (f) = fontf ) -

f÷



¥ font)
for all re S other than s

f
"

f) = fatf )
⇒

fata
) - fin ( D= 0

-

⇒ v (f) = §g(fontG) -

fYvDReg@eIuf.o.nsideTedses-u.v

ES

To
appears

twice ins@eq.sumabovoenEonneg.P
.
'

u
,
vets :

- not in sum

UES
,
vets
appears as tfce )

nets
,
ves

appears as - FG )



Goat : If ) = fays ) - fys )
F

have :

v (f) = §gCfo%) - f '%D

=

.gg#esIEa=fat(s)
- fn ( s )

go⇒



That Let f be
any st How

+ ( SF ) an start
.

value (f) E cost ( ST )

F
value (f) = font( s) - fysj

(lasflhm)

f fat ( s )

= e§+afcI

#
£
Eades

= cost Cs ,T )



Thin : If f is st flow with
no st path in Gf

,

then F st
. out ( s*,T* )

in G with Costa
*

ftp.#maxAow=mIheaftf
7 If :

use Gf
'

a

Eeg



pfccontt :



Fasters
- Depend upon choosing
good augmenting paths !

Ef : Edmonds - Karp :

choose largest bottleneck
edge

↳ Ocezbgelog tf*D
Et : shortest augment ng

Pak↳ OCVED



Evening

Nextwek .

.


