

Flows, pt 2

Announcements

More formally: Given a directed graph with two designated vortices, 5 and t. Each edge is given a capacity C(e). Smaximum amount that Assume: an be sent along it. -No edges enter S. 1 2 1 C -No edges leave t -Every C(c) EZ in integers Goal: f: E-IZ st Offer = Cler Max flow: find the most we off Can ship from 5 to t without exceeding any capacity Min cut: find smallest set of edges to delete in order to disconnect Stt

Thm: (Ford - Fulkerson'54, Eliss-Feinstein-Shannon'56) The max Flow value

= min cut value

Lost time: any flow = any cut Why? Value (F) = 5 eoutofs S 2 e ouit . J Cost(S,T) =E c(e) e outors

- An algorithm for max flow (continued from last time)

-The pf of correct hess will prove F-F thm

A flow f in a weighted graph G and the corresponding residual graph G_f .

An augmenting path in G_f with value F = 5 and the augmented flow f'.

Algorithm: Ford-Fulkerson (1956) MAXFLOW (G): Let fle)=0 initially de Construct GF=G (F) Let P be a Simple s-t path in Gr: f' Let P be a Simple s-t path f' augment (f, P) 1 (Omron) f f f' augment (f, P) Call DFS update Gr return f Lost time: Lemma: At each stage, flow & residual values are integers.

(f' 15 after anguenting) Lemma: In each iteration, Value (f') > value (f). In each iteration, value improves PF: found a peth P n Gf This P had some bottle neck edge. By pror lemma, that edge was an integer & was positive Value (f') increased by this bottle reat amount: GE 70 blo Ser Abto conthis edge 3. (C) to prov conthis edge 3. Dalue(f') = value(f) + bottleneck(P)

(or: The while loop halts ofter O(value(f*)) iterations, where f* is a maximum flow

(Since gets larger by at least 1 distays con integer)

Note: This is the best we can do!

X Q G T T T

To do better, need to consider how to choose a "good" augmenting path.

Thm: The F-F algorithm terminates with a maximum flow.

To prove this, we'll use cuts!

Thm: Let F be any s-t flow + (S,T) an start. value (F) = cost(S,T) $P = f^{out}(S) - f'S$ (last thm) $\leq f^{out}(S)$ = $\int_{e \text{ out of }} f(e)$

Thm: If f is st flow with no st path in GF, then I st. cut (S* J*) in G with Cost(S*, J*)= value (F) Cor: max flow = min cut/ use Gf:

pf (cont):

Faster versions -Depend upon choosing good augmenting peths! Ex: Edmonds - Karp: choose largest bottlenock edge (> O(E² log Elog /f*)) Ex: shortest augmenting D(VE2)

Even more!

Technique	Direct	With dynamic trees	Sources
Blocking flow	$O(V^2E)$	$O(VE \log V)$	[Dinits; Sleator and Tarjan]
Network simplex	$O(V^2E)$	$O(VE \log V)$	[Dantzig; Goldfarb and Hao;
			Goldberg, Grigoriadis, and Tarjan
Push-relabel (generic)	$O(V^2E)$	_	[Goldberg and Tarjan]
Push-relabel (FIFO)	$O(V^3)$	$O(V^2 \log(V^2/E))$	[Goldberg and Tarjan]
Push-relabel (highest label)	$O(V^2\sqrt{E})$	—	[Cheriyan and Maheshwari; Tunçel]
Pseudoflow	$O(V^2E)$	$O(VE \log V)$	[Hochbaum]
Compact abundance graphs		O(VE)	[Orlin 2012]

Several purely combinatorial maximum-flow algorithms and their running times.

Next week.