
CSCI 3100

- Backtracking
CtRecursion)

-

Dy
nparmojorammng

Announcement
- A bit late to office hours

tomorrow

- Here t - 2pm today ash)
- HW due on Friday

- written
, by #t of class

-

in general ,
I 'll often giveout HW solutions

not class later ,
So on

time is appreciated !

today : Recap of recursion /
Cm Lecture Notes.b§§ tracking

- Find a small choice
that reduces the problem

size

- For each answer to the
Choice

,
choose answer &

recurse

(while considering onlysub solutions Consistent
with that choice)

Last time : subset Sum

Also in notes : -

queens
- NFAS

Longesttncreasigsubsegvence
-0k¥

Given : List of integers A[1. on]

Goat : End longest subsequence
whose elements are

strictly increasing

Formally A[1. on]

Expand :

[12
,

5
,

1

,
3

,
4

, 13,6 ,
11

, 2,20]

Best?

a how to program ?

Formalize
-

:

The US of A[1. on] is either :

- the US of A[2 . .n]
- AG] followed by US of

A[2. an]

C or is it ?)

Pseudo code

Runtime
-

i

Correctness:

Dynamcprograminga
fancy term for smarter

recursion :

Memorization

- Developed by Richard Bellman
in mid - 19505

fprogramming
" here actually

means planning or scheduling)

Key: When recusing ,

if

many recursive calls
to overlapping sub cases ,

remember prior results
and don't do extra

work !

Simple example
-

:

Fibonacci Numbers
Fo=O , F. =L

,
Fn= Fn

. ,

+ Fn
. z

fn=2

Directly get an algorithm :

¥IEE¥÷ni⇒⇒**@
Runt :

Applying 'mlmoizat= :

Belteryet-

Correctness

Run_te=e
:

Even belter!

Runtimefspace:

Back to
Some notation :

Let Us (i ,j) := Length of

longest subsequence of
Afj. on] with elements

> Afi]

It ,A : ¥2 } ... i. . .j
. -

in

Then :

So
,

build a solution :

Algorithm :

Runtime r Space-

How to improve space ?

