CSC(3/00

Recep offw due · Last graded one back · Sample final · Review Monday · Find Friday: Sam · EC due Monday Next week: I'll be in Wed + Thursday, (Post hours on Webpage or email to set up)

Basic Assumptions

D Multiplication is easy.

@ Factoring is hard.

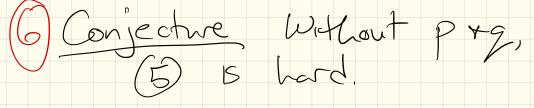
3 Generating prime numbers 15 easy.

Smeaning current alg are spw.

(Not obvious - but they are common)

(more later)

(F) Modular exponentiation IS easy: Given n, m, e, Can compute C=me mod n (5) Given prime factors, Can do modular root extraction; Guen n, e, C + N=Pq, Can recover m given m^e mod n.



So: RSA (finally!) Bob: Selects 2 large primes prg $\begin{array}{c} \hline & \mathcal{Let} & n = p_{q} \\ & \mathcal{J} & \mathcal{J}(n) = (p-1)(q-1) \end{array}$ · Select e + d s.t. - e and $\Phi(n)$ are relatively prime - $ed \equiv 1 \mod \overline{\Phi}(n)$ Now: (e,n) is public by • d is private tey (also p 9 9)

Encryting: Alice gets (e,n).

She takes a message M, with O < M < n. (chops into pieces)

Then: Ca Me mod n

(Remember public part: (E,n) was teg)

Alice Sends C to Bob

Decrypting: Bob gets C C = Me mod n Bob calculate: Claim: M Why? C mod n = (M^e)^d mod n = Med mod n Ynow $ed = 1 \mod \widehat{\Phi}(n)$ Med = M(ED(n)+1) mod h = (M (m) ~ Minod n = 1 ~ Minod n = M

Example:

<i>Key Pair</i> <i>Public key:</i> $n = 55$, $e = 3$			Key Pair GenerationPrimes: $p = 5, q = 11$			
			Public exponent: $e = 3$			
			<i>Private exponent:</i> $d = 3^{-1} \mod 20 = 7$			
Message	Encry	vption	$Decryption$ $m = c^7 \mod n$			
	$c = m^3$	mod n				
т	$m^2 \mod n$	$m^3 \mod n$	$c^2 \mod n$	$c^3 \mod n$	$c^6 \mod n$	$c^7 \mod n$
0	0	0	0	0	0	0
1	1	1	1	1	1	1
2	4	8	9	17	14	2
3	9	27	14	48	49	3
4	16	9	26	14	31	4
5	25	15	5	20	15	5
6	36	51	16	46	26	6
7	49	13	4	52	9	7
8	9	17	14	18	49	8
9	26	14	31	49	36	9

<u>So</u>: Why secure? Bob can decrypt! He berows (secret) d. Attacher Eve's goal: Figure out d! How ? " Bob needed \$(n), since d is e's inverse mod n. •Attacker knows n(but not $\overline{\mathcal{P}}(n)$). How to find $\overline{\Phi}(n)$?

So

Whole thing is searce, as long as Eve carit get (n), or pag. (pi)(2-1) Sthese world give d Bad news: Factoring IS NOT NP-Herd. Best aborithm: Number field sieve: O(e⁴⁴ lgn)³ (lg lgn)^{2/3})

Some practical notes - RSA can be used to encrypt entire message (but usually isrit) - Slow (compared to XOR-mg) - Easier to break than AES or other symmetric protocols - Also: I has assuming (M, n) = 1000Here, saved since n=pg, VM will be relatively prime to porg. - Can also be used for digital signing.

Continuing Work - Actual RSA is a bit more Complexe (Some n's, e's, d's, etc. are better then others!)

- Still in an "arms nace" to break this

oquantum computing Lo new ways?

Related problem: Fact: Fact: In Zp, there is no value x $\begin{array}{c} \text{(other than } 1 \neq -1 = (p-1) \\ \text{with } \chi^2 \equiv | \ \text{mod } p. \\ 1 \end{pmatrix}$ Fact 2: p prime \Rightarrow p-1 even, So p-1= 2^s d for some s, d >0 () Remember this s!

Then: If p is prime For every a EZp, either: @ Gd = 1 mod P B a 2r.d = -1 mod p for some $O \leq r \leq s -)$ Why? $f'' u = 1 \mod P$ $(since \overline{\mathcal{P}}(p) = p-1)$ So take square root of apri: must get = 1 or -1 IF -1: D holds IE never get -1, remove powers of 2 => (5) holds

So: Contrapositive: If Fa Such that and ad #1 mod p and 2rd #1 mod p and 2rd #1 mod p for all Off 45-1, then p is not prime. Such an a is a witness (Miller - Rabin How to find? Prinding testing) Guess an a, + check.