
CS3100: Algorithms Homework 8 Fall 2017

CS3100: Algorithms
Homework 8

1. You are asked to consult for a business where clients bring in jobs each day for processing.
Each job has some processing time ti that is known when the job arrives. The company has
a set of 10 machines, and each job can be processed on any of those machines.

Up until now, the company has been running the simple “minimize the makespan” ap-
proximation algorithm that we covered in lecture, which (as you will recall) always gives a
2-approximation. They’ve been told this may not be the best approximation algorithm pos-
sible, and they are wondering if they should be afraid of the performance. However, they are
reluctant to change the scheduling, since it is simple and jobs can be assigned to a processor
as soon as they arrive.

In particular, once you told them the makespan could be twice as large as optimal, they
decided to analyze their performance and found a surprising fact: They have been running it
each day for a month, and they have not observed it to produce a makespan more than 20%
above the average load, 1

10sumiti.

To try to understand why they never hit a factor-of-two behavior, you ask a bit more
about the kinds of jobs and loads they see. You find out that the sizes of jobs range between
1 and 50, so that 1 ≤ ti ≤ 50 for all i, and that the total load

∑
i ti is quite high each day -

always at least 3000.

Prove that for these types of jobs, the makespan greedy approximation algorithm from
class will indeed always find a solution whose makespan is at most 20 percent above the
average (and hence optimal possible) load.

2. Now, you have been asked to act as a consultant for the Port Authority of an ocean-side city.
They’re currently doing good business, and their revenue is constrained almost entirely by
the rate at which they can unload the ships arriving in their port.

Here’s a basic sort of problem they face. A ship arrives, with n containers of weight
w1, w2, . . . , wn. Standing on the dock is a set of trucks, each of which can hold up to K units
of weight. (You can assume the wi’s and K are integers.) You can stack multiple containers
in each truck, as long as you don’t exceed total weight K on any one of them; the goal is the
minimize the total number of trucks needed. (Note: This problem is NP-Complete, but you
don’t need to prove that fact.)

A greedy algorithm (which should look familiar) for this might proceed as follows: Start
with an empty truck, and begin piling containers 1, 2, 3, . . . into it until the next container
would overflow the capacity K. Now declare this truck loaded and send it off, and start
loading the next truck. This algorithm, by considering trucks only one at a time, might not
get the best total packing.

(a) Give an example of a set of weights and a value of K where this algorithm does not use
the minimum number of trucks.

(b) Show, however, that the number of trucks used by this algorithm is within a factor of 2
of the minimum possible number, for any set of weights and any value of K.

1



CS3100: Algorithms Homework 8 Fall 2017

3. Suppose you are given a set of positive integers A = {a1, a2, . . . , an} and a positive integer
B. A subset S ⊆ A is called feasible if the sum of the numbers in S does not exceed B:∑

ai∈S ai ≤ B. The sum of the numbers in S will be called the total sum of S. Your job is to
select a feasible subset S of A whose total sum is as large as possible.

(a) Consider the following algorithm:

Let S ← ∅
Let T ← 0
For each i← 1 . . . n

If T + ai ≤ B
S ← S ∪ {ai}
T ← T + ai

return S

Give an example where the total sum of the set S returned by this algorithm is less than
half the total sum of some other feasible subset of A. (In other words, this is NOT a
2-approx.)

(b) Now, give a polynomial time approximation algorithm of this problem with the following
guarantee: It returns a feasible set whose total some is at least half as large as the optimal
feasible set. (In other words, find a 2-approximation.)

Hint: Your algorithm should be at most O(n log n) time, but you can probably do better.

2


