
CS314: Algorithms Homework 8 Fall 2013

CS314: Algorithms
Homework 8

1. Recall the makespan problem discussed in class. We discussed the fact that our greedy
approximation algorithm does not always give an optimal makespan assignment, but only a
2-approximation. Given an example of a set of jobs (along with a number of machines) where
the greedy algorithm fails to return a solution with optimal size.

2. Recall the shortest first greedy algorithm for the interval scheduling problem that we discussed
in class: Given a set of intervals, repeatedly pick the shortest interval I, delete all other
intervals that overlap I, and repeat as long as there is an interval still in the set.

In an earlier lecture, we saw that this does NOT always produce a maximum size set of non-
overlapping intervals. However, it turns out to have the following interesting approximation
guarantee. If s∗ is the maximum size of a set of non-overlapping intervals, and s is the size
of the set produced by our greedy shortest first algorithm, then s ≥ 1

2s
∗, so that this greedy

algorithm is a 2-approximation. Prove this fact.

3. Suppose you’re acting as a consultant for the Port Authority of an ocean-side city. They’re
currently doing good business, and their revenue is constrained almost entirely by the rate at
which they can unload the ships arriving in their port.

Here’s a basic sort of problem they face. A ship arrives, with n containers of weight
w1, w2, . . . , wn. Standing on the dock is a set of trucks, each of which can hold up to K units
of weight. (You can assume the wi’s and K are integers.) You can stack multiple containers
in each truck, as long as you don’t exceed total weight K on any one of them; the goal is the
minimize the total number of trucks needed. (Note: This problem is NP-Complete, but you
don’t need to prove that fact.)

A greedy algorithm (which should look familiar) for this might proceed as follows: Start
with an empty truck, and begin piling containers 1, 2, 3, . . . into it until the next container
would overflow the capacity K. Now declare this truck loaded and send it off, and start
loading the next truck. This algorithm, by considering trucks only one at a time, might not
get the best total packing.

(a) Give an example of a set of weights and a value of K where this algorithm does not use
the minimum number of trucks.

(b) Show, however, that the number of trucks used by this algorithm is within a factor of 2
of the minimum possible number, for any set of weights and any value of K.

1


