
CS314: Algorithms Homework 2 Fall 2013

CS314: Algorithms
Homework 2

1. Suppose you are given an array A[1..n] of integers. Describe and analyze an algorithm that
finds the largest sum of elements in a contiguous subarray A[i..j]. For example, if the array
contains (−6, 12,−7, 0, 14,−7, 5), the largest sum of contiguous entries is 19 = 12−7+0+14.

2. We define a subsequence as anything that can be obtained from a sequence (or list of things)
by extracting a subset of the elements but keeping them in the same order. For example,
the strings C, YAIOAI, and DYNAMICPROGRAMMING are all subsequences of the string
DYNAMICPROGRAMMING.

Let A[1..m] and B[1..n] be to arbitrary arrays. A common subsequence of A and B is
another sequence that is a subsequence of both A and B. Describe an efficient algorithm to
compute the length of the longest common subsequence of A and B.

3. Consider a graph with n vertices. Recall that a subset of the vertices is called independent if
no two of them are joined by an edge. Finding large independent sets is difficult in general,
as we discussed in class, but can be done on some simple classes of graphs.

Call a graph a path if its vertices can be written as v1, v2, . . . , vn with an edge between
each vi and vi+1 (but no other edges). With each vertex vi, we associate a weight wi.

Our goal in this problem is to find the largest weight independent set. (Note that this is
different from the largest independent set, since here we take the weights into account!)

(a) Construct an example showing why the following simple greedy algorithm does NOT
always work.

S ← ∅
While G is not empty:

Pick a node vi of maximum weight
Add vi to S
Delete vi and its neighbors from G

Return S

(b) Construct an example showing why the following different simple greedy algorithm does
NOT always work.

S1 ← {vi with i odd}
S2 ← {vi with i even}
oddsum ← sum of all weights in S1

evensum ← sum of all weights in S2

if evensum > oddsum
return S2

else
return S1

(c) Give an algorithm that takes an n-vertex path G with weights and returns an indepen-
dent set of maximum total weight. Your running time should be polynomial in n.

1


