CS314: Algorithms

Homework 10: Number theory and cryptography

1. Give formal proofs of the first theorem we used in lecture:

Theorem: Let a, b, and c be integers. Then:

- If $a \mid b$ and $b \mid c$, then $a \mid c$.
- If $a \mid b$ and $a \mid c$, then $a \mid(i b+j c)$ for all integers i and j.
- If $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.

2. Let p be a prime. Write an efficient alternative algorithm for computing the multiplicative inverse on an element of Z_{p} that is not based on the Extended Euclidean Algorithm. And don't forget the proof of correctness and the runtime analysis!
3. Construct a table showing an example of the RSA crypto system with parameters $p=17$, $q=19$, and $e=5$.

For clarity, your table should have two rows, one for the plaintext M and the other for the cipher text C. Each column should be an ASCII letter/number of your message M which you encode into C. Show how you encode each letter appropriately, and feel free to be creative with your message (although please keep things civil!)

