Math 135: Discrete Mathematics, Fall 2012 Homework 7

Due in class on Monday, Nov. 5

1. Let f_{n} be the $n^{\text {th }}$ Fibonacci number, defined as $f_{n}=f_{n-1}+f_{n-2}$ with $f_{0}=0$ and $f_{1}=1$. (Hint: Remember, induction is your friend when doing recurrences!)
(a) Prove that $\sum_{i=1}^{n}\left(f_{i}\right)^{2}=f_{n} f_{n+1}$ whenever n is a positive integer.
(b) Show that $f_{n+1} f_{n-1}-\left(f_{n}\right)^{2}=(-1)^{n}$ when n is a positive integer.
2. The set of leaves and the set of internal nodes of a full binary tree can be defined recursively, using the definition of $T_{1} \cdot T_{2}$ from class or as it is presented in section 5.3 of the book.

- Basis step: The root r is a leaf of the full binary tree with one vertex. This tree has no internal vertices.
- Recursive step: The set of leaves of the tree $T_{1} \cdot T_{2}$ is the union of the sets of leaves of T_{1} and T_{2}. The internal vertices of $T_{1} \cdot T_{2}$ are the (new) root as well as the union of the sets of internal vertices of T_{1} and T_{2}.

Use induction to show that the number of leaves of a full binary tree T is one more than the number of interval vertices in a full binary tree.
3. Find a recurrence relation for the number of ways a person can climb n stairs if the person can take 1, 2, or 3 stairs at a time. (Don't forget the base cases.) Now, how many ways are there for a person to climb 8 stairs?
4. Give exact solutions to the following recurrences. Show your work.
(a) $A(n)=5 A(n-1)-4 A(n-2), A(0)=0, A(1)=3$.
(b) Find the solution to the same recurrence as part (a), with $A(0)=3, A(1)=4$.
(c) $C(n)=-5 C(n-1)-6 C(n-2)+3 \cdot(-2)^{n}, C(0)=0$ and $C(1)=-2$.
5. Given general form solutions to the following recurrences. (Note: this means you don't have to solve for the constants!)
(a) $a_{n}=8 a_{n-2}-16 a_{n-4}+3 n-2$
(b) $b_{n}=8 b_{n-1}-16 b_{n-2}+\left(n^{2}-1\right) 4^{n}$
(c) $c_{n}=5 c_{n-1}-8 c_{n-2}+4 c_{n-3}+n^{3}-n^{2}$

