Math 135: Discrete Mathematics, Fall 2012 Homework 5

Due in class on Friday, Oct. 12

- 1. (a) Show that $\log_2 x = O(\log_4 x)$.
 - (b) Show that if a and b are real numbers with a > 1 and b > 1, if f(x) is $O(\log_b(x))$, then f(x) is $O(\log_a(x))$.
- 2. Find a O(n) estimate for the run-time of the piece of code given below.

```
m:=0
for (i:=1 to n)
for (j:= i * i to n * n)
m:=i + j
```

3. There is a more efficient algorithm (in terms of the number of multiplications and additions) for evaluating polynomials than the one we considered in worksheet 7. It is called **Horner's method**. Consider the following pseudocode for this procedure, which finds a solution to the polynomial $a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ at x = c:

```
procedure Horner(c, a_0, a_1, \dots, a_n)

y = a_n

for i := 1 to n

y := y * c + a_{n-i}

return y
```

- (a) Evaluate $x^4 4x^3 + 2x^2 + x + 3$ at x = 2 by working through each step of the algorithm and showing the values assigned at least step. (Make sure to write EVERY value a variable gets if it changes during the algorithm.)
- (b) Exactly how many multiplications and additions are used by this algorithm to evaluate a polynomial of degree n at x = c? (You don't need to count additions used to increment i in the for loop.)
- 4. Devise an algorithm that finds all terms of a finite sequence a_1, \ldots, a_n of positive integers that are greater than the sum of all the previous terms of the sequence. Analyze the complexity (number of comparisons, additions, and multiplcations) of your algorithm.

Note: Algorithms with better complexity/runtime will be given more credit!

5. Extra credit: Suppose that f(x) is O(g(x)). Does it follow that $2^{f(x)} = O(2^{g(x)})$? Prove your answer.