Math 135: Discrete Mathematics, Fall 2012
 Homework 4

Due in class on Friday, Sept. 28, 2010

1. Give an example of a function from \mathbb{N} to \mathbb{N} which is:
(a) one-to-one but not onto
(b) onto but not one-to-one
(c) both onto and one-to-one (but NOT the identity function)
(d) neither one-to-one or onto
2. For the following functions, decide whether each one is one-to-one, onto, and bijective, and prove each of your answers.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$, with $f(x)=(x+1) /(x+2)$
(b) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, with $f(m, n)=m+n+1$
(c) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, with $f(m, n)=m^{2}-4$
3. Let f be a function from the set A to the set B. Let S and T be subsets of A.
(a) Prove that $f(S \cup T)=f(S) \cup f(T)$
(b) Prove that $f(S \cap T) \subseteq f(S) \cap f(T)$
(c) Give an example to show that the inclusion from part (b) may be proper - in other words, give examples of sets and a function where $f(S \cap T) \subset f(S) \cap f(T)$
4. Show that $x \log x$ is $O\left(x^{2}\right)$ but that x^{2} is not $O(x \log x)$.
5. Give a big-O estimate (as tight as possible) of the following functions. Be sure to justify your answer, remembering that you are welcome to use theorems from class or the book.
(a) $\left(n^{3}+n^{2} \log n\right)(\log n+1)+(14 \log n+11)\left(n^{3}-n\right)$
(b) $\left(2^{n}+n^{2}\right)\left(n^{3}+3^{n}\right)$
(c) $f(x)=\left(x^{2}\right)\left(\pi+\left(16^{23!}\right)\right)^{7}+\sum_{i=0}^{10}\left(\frac{e}{i+1}+i\right)^{12} x^{i}$
6. Arrange the functions $2^{n}, n^{2} \log n$, $\sqrt{n},(n!)^{2}$, and 10^{n} so that each function is big-O of the next one, and give a short proof for each pair to show that they are in the correct order. (You may use theorems or big-O bounds we proved in class or in the book if they are helpful.)
7. Extra credit: If f and $f \circ g$ are both one-to-one, does it follow that g is one-to-one? Justify your answer.
