Math 135: Discrete Mathematics, Fall 2012 Homework 3

Due in class on Friday, Sept. 21, 2010

- 1. Find two sets A and B such that $A \in B$ and $A \subseteq B$.
- 2. Give the following sets, if $A = \{1, 2, (x, y)\}$, $B = \{b, c, \{2, 3\}\}$, and $C = \{1, a, (1, b), (2, c), (x, y)\}$. (Recall that $\mathcal{P}(X)$ is the power set of *X*.)
 - (a) $\mathcal{P}(B)$
 - (b) $(A \times B) C$
 - (c) $\mathcal{P}(\mathcal{P}(\emptyset)) \times (A \cap C)$
- 3. Prove or disprove the following:
 - (a) $A \times (B \cup C) = (A \times B) \cap (A \times C)$
 - (b) $(A C) \cap (C B) = \emptyset$
 - (c) If $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B.
 - (d) If $A \cap C = B \cap C$, then A = B.
- 4. (a) Prove that for any two sets A and B, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
 - (b) Give a counterexample for the following statement: if A and B are sets, then $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$.