# Math 135: Discrete Mathematics, Fall 2012 Homework 3 

Due in class on Friday, Sept. 21, 2010

1. Find two sets $A$ and $B$ such that $A \in B$ and $A \subseteq B$.
2. Give the following sets, if $A=\{1,2,(x, y)\}, B=\{b, c,\{2,3\}\}$, and $C=\{1, a,(1, b),(2, c),(x, y)\}$. (Recall that $\mathcal{P}(X)$ is the power set of $X$.)
(a) $\mathcal{P}(B)$
(b) $(A \times B)-C$
(c) $\mathcal{P}(\mathcal{P}(\emptyset)) \times(A \cap C)$
3. Prove or disprove the following:
(a) $A \times(B \cup C)=(A \times B) \cap(A \times C)$
(b) $(A-C) \cap(C-B)=\emptyset$
(c) If $\mathcal{P}(A)=\mathcal{P}(B)$, then $A=B$.
(d) If $A \cap C=B \cap C$, then $A=B$.
4. (a) Prove that for any two sets $A$ and $B, \mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(b) Give a counterexample for the following statement: if $A$ and $B$ are sets, then $\mathcal{P}(A) \cup$ $\mathcal{P}(B)=\mathcal{P}(A \cup B)$.
