Math 135: Discrete Mathematics, Fall 2010 Worksheet 6

- 1. Determine if each of these functions is O(x), $\Omega(x)$, and $\Theta(x)$.
 - (a) f(x) = 10
 - (b) $f(x) = x^2 + x + 12$
 - (c) f(x) = 36x 14
 - (d) $f(x) = \lfloor x/2 \rfloor$
- 2. Give as good a big-O estimate as possible for the following:
 - (a) $(n^2+8)(n+1)$
 - (b) $(n \log n + n^2)(n^3 + 2)$
 - (c) $(n! + 2^n)(n^3 + \log(n^2))$
- 3. Suppose that f(x) is O(g(x)) and g(x) is O(h(x)), and prove that f(x) is O(h(x)). Hint: Use the definitions!

4. Show that the functions $f(n) = 2^{2 \log_2 n}$ and $g(n) = 3n^2 + 14$ are asymptotically equivalent.

5. Find functions f and g from \mathbb{N} to \mathbb{R}^+ such that f(n) is not O(g(n)) and g(n) is not O(f(n)).

6. Show that $\log n!$ is greater than $(n \log n)/4$ for n > 4. Hint: Begin with inequality $n! > n(n-1)(n-2) \cdots n/2$.