Math 135: Discrete Mathematics, Fall 2010 Homework 6

Due in class on Friday, October 6, 2010

1. Let f_{n} be the $n^{\text {th }}$ Fibonacci number, defined as $f_{n}=f_{n-1}+f_{n-2}$ with $f_{0}=0$ and $f_{1}=1$. (Hint: Remember, induction is your friend when doing recurrences!)
(a) Prove that $\sum_{i=1}^{n}\left(f_{i}\right)^{2}=f_{n} f_{n+1}$ whenever n is a positive integer.
(b) Show that $f_{n+1} f_{n-1}-\left(f_{n}\right)^{2}=(-1)^{n}$ when n is a positive integer.
2. Suppose that you find on your Math 135 instructor's desk a toy with 3 wooden pegs, one of which has 8 disks of different sizes neatly stacked (largest on the bottom, smallest on the top) on it. A card near the toy tells you the rules of playing:

- Your goal is to move all of the disks from the first peg to one of the other two pegs.
- Only one disk may be moved at a time.
- No disk may ever be placed on a smaller disk.

Let R_{n} be the minimum number of steps required to move n disks on a peg of such a toy to another peg. Impress your instructor by giving (and justifying) a recurrence for R_{n} and the solving it.
3. Give exact solutions to the following recurrences. Show your work.
(a) $A(n)=-4 A(n-1)+5 A(n-2), A(0)=2, A(1)=8$.
(b) Find the solution to the same recurrence as part (a), with $A(0)=2, A(1)=4$.
(c) $C(n)=2 C(n-1)+n+5, C(0)=0$.
4. Given general form solutions to the following recurrences. (Note: this means you don't have to solve for the constants!)
(a) $A(n)=7 A(n-1)-16 A(n-2)+12 A(n-3)+n 4^{n}$
(b) $B(n)=4 B(n-1)-4 B(n-2)+\left(n^{2}+1\right) 2^{n}$
(c) $C(n)=7 C(n-2)+6 C(n-3)$

