Math 135: Discrete Mathematics, Fall 2010 Homework 5

Due in class on Wednesday, October 20, 2010

For this homework, you may write up solutions with 1 partner; both of you will receive the same grade based on your joint writeup. Please make sure to read the course policies on homework *before* writing up your homework.

- 1. Show that x^3 is $O(x^4)$ but that x^4 is not $O(x^3)$.
- 2. (a) Show that $\log_2 x = O(\log_4 x)$.
 - (b) Show that if a and b are real numbers with a > 1 and b > 1, if f(x) is $O(\log_b(x))$, then f(x) is $O(\log_a(x))$.
- 3. Give a big-O estimate (as tight as possible) of the following function. Be sure to justify your answer, either using theorems from class or a direct big-O proof.

$$f(x) = (\pi + (e^{10!}))^7 + \sum_{n=0}^{10} \left(\frac{1}{e} + n\right)^{25} x^n$$

4. Sort the following functions from asymptotically smallest to asymptotically largest. Include a proof for each relationship. To simplify your answers, write $f(n) \ll g(n)$ to mean f(n) = O(g(n)), and write $f(n) \equiv g(n)$ to mean $f(n) = \Theta(g(n))$.

For example, the functions n^3 , 2n, and $2^{\log_2 n}$ could be sorted as $2n \equiv 2^{\lg n} \ll n^3$ or as $2^{\lg n} \equiv 2n \ll n^3$. Further, you would need to include three proofs: that $2n = O(2^{\lg n})$, that $2n = \Omega(2^{\lg n})$, and that $2n = O(n^3)$.

 $\frac{n}{\lg n}$ $8n^3 + 10n + 1,024$ $n\lg(n^4)$ $2^{3\log_2 n}$ $\frac{n}{n!}$

5. Suppose that f(x) is O(g(x)). Does it follow that $2^{f(x)} = O(2^{g(x)})$? Prove your answer.