Math 135: Discrete Mathematics, Fall 2010 Homework 4

Due in class on Friday, Oct. 1, 2010

1. For the following functions, decide whether each one is one-to-one, onto, and bijective, and prove each of your answers.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$, with $f(x)=x^{2}+1$
(b) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, with $f(m, n)=2 m-n$
(c) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$, with $f(m, n)=m^{2}-n^{2}$
2. Give an example of a function from \mathbb{N} to \mathbb{N} which is:
(a) one-to-one but not onto
(b) onto but not one-to-one
(c) both onto and one-to-one (but NOT the identity function)
(d) neither one-to-one or onto
3. Let f be a function from the set A to the set B. Let S and T be subsets of A.
(a) Prove that $f(S \cup T)=f(S) \cup f(T)$
(b) Prove that $f(S \cap T) \subseteq f(S) \cap f(T)$
(c) Give an example to show that the inclusion from part (b) may be proper - in other words, give examples of sets and a function where $f(S \cap T) \subset f(S) \cap f(T)$
