Math 135: Discrete Mathematics, Fall 2010 Homework 3

Due in class on Wednesday, Sept. 22, 2010

For this homework, please submit your own work individually. Please make sure to read the course policies on homework before writing up your homework.

1. Find two sets A and B such that $A \in B$ and $A \subseteq B$.
2. Give the following sets, if $A=\{a, b, c\}, B=\{(1,4), 2,\{2,3\}\}$, and $C=\{a, 1,(c, 2)\}$. (Recall that $\mathcal{P}(X)$ is the power set of X.)
(a) $\mathcal{P}(B)$
(b) $(A \times B)-C$
(c) $\mathcal{P}(\mathcal{P}(\emptyset)) \times A$
3. Prove or disprove the following:
(a) $A \times(B \cup C)=(A \times B) \cap(A \times C)$
(b) $(A-C) \cap(C-B)=\emptyset$
(c) If $\mathcal{P}(A)=\mathcal{P}(B)$, then $A=B$.
(d) If $A \cap C=B \cap C$, then $A=B$.
4. If A and B are sets, then the symmetric difference of A and B is written $A \triangle B$ and is defined to be $(A-B) \cup(B-A)$. Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ are sets, then $\left(\left(\left(A_{1} \triangle A_{2}\right) \triangle A_{3}\right) \cdots \triangle A_{n-1}\right) \triangle A_{n}=\left\{x: x\right.$ is in an odd number of the sets $\left.A_{1}, A_{2}, \ldots, A_{n}\right\}$.

Hint: Think induction!
5. (a) Prove that if A and B are sets, then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(b) Give a counterexample for the following statement: if A and B are sets, then $\mathcal{P}(A) \cup$ $\mathcal{P}(B)=\mathcal{P}(A \cup B)$.

