Math 135: Discrete Mathematics, Fall 2010 Homework 1

Due in class on Friday, January 22, 2010

Submit your solutions for this homework in class on Friday, September 9. Please make sure to read the course policies on homework before writing up your homework.

1. Write the negation, contrapositive, converse and inverse of the following statements.
(a) For any integer x, if x is even, then x^{2} is even.
(b) You will be late to class if you oversleep.
(c) If Dr. Chambers' daughter is sick this week, then she either brings her to lecture or gets a babysitter.
2. Rewrite the following propositions as unambiguous English sentences, given the following prepositions.

- $A(x)$ means " x likes West Wing".
- $B(x)$ means " x likes Buffy".
- $C(x)$ means " x has good taste".
- $D(x)$ means " x watches TV".

For example the statements $\forall x[D(x) \rightarrow A(x)]$ could be translated to "Everyone who watches TV likes West Wing."
(a) $\forall x[A(x) \vee B(x) \rightarrow D(x)]$
(b) $\exists x[A(x) \wedge B(x)]$
(c) $\forall x[B(x) \rightarrow C(x)]$
(d) $\exists x[A(x) \vee B(x) \wedge C(x) \wedge D(x)]$
3. Express the negations of the following statements so that all negation symbols appear immediately preceding the predicates (and not outside any quantifiers or groups of predicates).
(a) $\forall x \exists y P(x, y) \vee \forall x \exists y Q(x, y)$
(b) $\exists x \exists y(Q(x, y) \rightarrow Q(y, x))$
(c) $\forall y \exists x \exists z(T(x, y, z) \vee Q(x, y)) \wedge \exists x \forall y \neg P(x, y)$
4. Classify the following formulas into logically equivalent groups. (Hint: Try using truth tables!)
(a) p
(b) $p \vee \neg p$
(c) $p \wedge \neg p$
(d) $(p \wedge q) \rightarrow p$
(e) $(p \vee q) \rightarrow p$
(f) $((p \vee q) \wedge \neg q) \rightarrow(p \wedge q)$
(g) $(p \vee \neg p) \rightarrow(p \wedge \neg p)$
(h) $(((p \vee q) \vee \neg q) \vee(r \wedge p)) \wedge(p \vee \neg q)$
5. While walking across campus, you come across 3 people have an argument. The first, Alice, tells you, "Bob or Carol is lying." The second, Bob, tells you, "Carol is lying". The third, Carol, tells you, "Alice and I are both telling the truth". Who, if anyone, is telling you the truth?
6. Extra Credit: Next, you come across two different people on your walk. Donald says, "I am lying if Erik is." Erik says, "If I am lying, then Donald is lying." Can you tell who if anyone is telling the truth?

