CS 145: Scientific Programming
 Review problems for Exam 2

1. Write code to determine the smallest number which is divisible by 11 and 19 whose square is greater than 100000000 .
2. Suppose for the following problems that $x=-3$ and $y=[-4,7,1,8,-2,0]$. Give the output of the following matlab commands:
(a) $8-12 \mid 6+6 / 2 \& 2$
(b) $-5<x<-1$
(c) $y<0$
(d) $y(y<6)$
3. The monthly payment M of a loan of amount P for N years and an annual interest rate r percent can be calcuated by the formula:

$$
M=P\left(\frac{\frac{r}{100}}{1-\left(1+\frac{r}{1200}\right)^{-N}}\right)
$$

Write a MATLAB function that calculates the monthly payment of a loan. For the function name and arguments, use $\mathrm{M}=\operatorname{amort}(\mathrm{P}, \mathrm{r}, \mathrm{N})$, where P is the loan amount, r is the annual interest rate, N is the length of years in the loan, and M is the amount of a monthly payment.
4. Consider a vector x. Write a script which computes the average value in the array and then calculates how many of the values in x are less than or equal to that average value.
5. (a) Recall that if (x, y) is the Cartesian coordinates of a point in the plane, the polar coordinates of the same point are (r, θ), where $r^{2}=x^{2}+y^{2}$ and $\tan \theta=y / x$. Write a script to determine the polar coordinates of a point from the Cartesian coordinates. For the function name and arguments use [theta radius] $=$ CartesianToPolar (x, y).
(b) Write a script which calculates the polar coordinates for the points $(15,3)$ and $(-4,2)$.
6. Write code to plot the polynomial $2 x^{2}-6 x+2$ and its derivative in the range $[-10,10]$.
7. Suppose that a sequence of numbers a_{1}, a_{2}, \ldots if defined as follows:

$$
\begin{aligned}
& a_{1}=5 \\
& a_{n}=2 a_{n-1}+1 \text { if } a_{n} \text { is a multiple of } 4 \\
& a_{n}=a_{n-1}+1 \text { if } a_{n} \text { is not a multiple of } 4
\end{aligned}
$$

Write code to calculate the first 100 values of the sequence.
8. Write a function that takes an array and calculates the standard deviation of its values. The standard deviation can be calculated using the following formula:

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N}}
$$

where $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ is the average of the values.
9. Rewrite the following statement using a for loop:

$$
a(2: n-1)=b(1: n-2)+c(2: n-1) . * d(3: n) ;
$$

