CS 145: Scientific Programming
 Review problems for Exam 1

1. The distance from a point $\left(x_{0}, y_{0}\right)$ to a line $a x+b y+c=0$ is given by:

$$
d=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Write Matlab code to compute the distance of the point $(3,-4)$ from the line $2 x-7 y-10=0$. (Hint: First define the variables you know, and then use the abs and sqrt commands to calculate d.)
2. Sound level L_{p} in units of decibels is determine by:

$$
L_{p}=20 \log _{10}\left(\frac{p}{p_{0}}\right)
$$

where p is the sound pressure of the sound, and $p_{0}=20 \times 10^{-6}$ is a reference sound pressure.
(a) Determine the sound pressure of 90 decibels of noise (the amount generated by a passing truck).
(b) How many times larger (louder) is the sound pressure of the truck versus the sound pressure during a normal conversation, where the loudness is 65 decibels?
3. Give the output of the following Matlab commands:
(a) $[3: 3: 15]$
(b) $[7:-2:-3]$
(c) $\operatorname{zeros}(3)$
4. The position as a function of time $(x(t), y(t))$ of a projectile fired with a speed of v_{0} at an angle θ is given by: $x(t)=t v_{0} \cos (\theta)$ and $y(t)=t v_{0} \sin (\theta)-\frac{g t^{2}}{2}$, where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. The distance r to a projectile at time t is then given by $r(t)=\sqrt{x(t)^{2}+y(t)^{2}}$.
Consider an example where $v_{0}=100 \mathrm{~m} / \mathrm{s}^{2}$ and $\theta=90^{\circ}$. Give Matlab code to generate a array that holds the distance to the projectile every second from 0 seconds up to 10 seconds and graphs the result.

5. Fisheries commonly estimate the growth of a fish using the von Bertalanffy growth law:

$$
L=L_{\max }\left(1-e^{-K(t+\tau)}\right)
$$

where $L_{\max }$ is the maximum length, K is a rate constant, and τ is a time constant. These constants vary greatly depending on the species of fish. Assume $L_{\max }=50 \mathrm{~cm}$, and $\tau=0.5$ years, calculate the length of a fish at 2 years of age for $K=0.25,0.5$, and 0.75 years.
6. Give Matlab code to solve the following system of linear equations:

$$
\begin{aligned}
1.5 a-2 b+c+3 d & =7.5 \\
3 a+b-c+4 d & =16 \\
2 a+6 b-3 c-d & =78 \\
5 a+2 b+4 c-2 d & =71
\end{aligned}
$$

7. Suppose you have two arrays x and y of length n. Use array operations to calculate

$$
\sum_{i=1}^{n} \sqrt{\frac{\left|x_{i}-y_{i}\right|}{x_{i}^{2}+y_{i}^{2}}}
$$

8. The factorial n ! of a positive integer is defined by $n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1$. Write a script that (assuming n has been predefined as a positive integer) will compute the value of n ! and save it as a variable named nfac.
9. Write a Matlab program that (assuming m and n have already been predefined) creates a matrix of size $n \times m$, where the entry in row i and column j contains the value $\sin (i+j)$ (where $i+j$ is in radians).
10. Write a program the creates a array sums of length 100 where the entry at index n is equal to

$$
\sum_{i=1}^{n} \frac{\sin (i)}{2^{i}}
$$

