Scientific Programming

Solving linear systems
Suppose that you are given several linear equations to solve, for example

$$
\begin{aligned}
2 x+y & =1 \\
4 z+y & =3 \\
x-y-z & =6
\end{aligned}
$$

There are several ways that Matlab can be used to solve for x, y and z. The textbook discusses one of them; another is to use the linsolve command.

The first step is two create a matrix representing the left-hand side of the equations and an array representing the right-hand side. First rewrite the equations so that the variables are in the same order (observe that the second row has changed) and that no variables are missing.

$$
\begin{array}{r}
\mathbf{2} x+\mathbf{1} y+\mathbf{0} z=\mathbf{1} \\
\mathbf{0} x+\mathbf{1} y+\mathbf{4} z=\mathbf{3} \\
\mathbf{1} x+-\mathbf{1} y+-\mathbf{1} z=6
\end{array}
$$

The numbers on the left form our matrix and the ones on the right our array (which is a column).
In Matlab notation the matrix is: $\mathrm{M}=\left[\begin{array}{lllllllll}2 & 1 & 0 & 1 & 4 ; & 1 & -1\end{array}\right]$ and the array is $b=[1 ; 3 ; 6]$. Using the command linsolve (M, b) solves for the variables. For example,

```
>> M = [ 2 1 0; 0 1 4; 1 -1 -1 ]
M =
    2 1 0
    0 1 4
    1 -1 
>> b = [ 1; 3; 6 ]
b =
    1
    3
    6
>> solution = linsolve(M, b)
solution =
    3
    -5
    2
```

The array solution contains the values of x, y and z that solve the equation. The order is the same use we used when converting the equations to a matrix.

