Scientific Programming

Homework 4: Due 10/16

Practice problems (not to be turned in) Chapter 6 in the book: 2, 4, 5

Homework problems Do not just turn in the answers to the following problems, show the exact Matlab commands you used to find the answer.

1. Write a function that calculates the local maximum or minimum of a quadratic function of the form $f(x)=a x^{2}+b x+c$. For the function name and arguments use: $[\mathrm{x}, \mathrm{y}]=\operatorname{maxmin}(\mathrm{a}, \mathrm{b}, \mathrm{c})$. The input arguments are the constants a, b, and c , and the output are the coordinates (x, y) of the maximum or minimum.
2. (a) When n electrical resistors are connected in parallel, their equivalent resistance $R_{E Q}$ can be determined by: $\frac{1}{R_{E Q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}$. Write a function that calculates $R_{E Q}$, using the function name and arguments $R E Q=\operatorname{req}(R)$, where R is a vector where each element is a resistor value and the output from the function is $R_{E Q}$.
(b) Write a script that uses the function to calculate the equivalent resistance when the following resistors are connected in parallel: $50 \Omega, 75 \Omega, 300 \Omega, 60 \Omega, 500 \Omega, 180 \Omega$, and 200Ω.
3. The Taylor series expansion for $\cos (x)$, where x is in radians, is:

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\inf } \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

Write a function that determines $\cos (x)$ using Taylor's series expansion. For function name and arguments use $\mathrm{y}=\operatorname{cosTaylor}(\mathrm{x})$, where the input argument x is in degrees and the output y is the value of $\cos (x)$. In the program use a loop to add the terms of the series. If a_{n} is the $n^{t h}$ terms of the series, than the sum S_{n} of the n terms is $S_{n}=S_{n-1}+a_{n}$. In each pass calculate estimated error E given by: $E=\left|\left(S_{n}-S_{n-1}\right) / S_{n-1}\right|$. Stop adding terms when E is less than .000001 .

