
Scientific Programming
Derivatives, Difference Equations and Euler’s Method

1 Derivatives and Difference Equations

In calculus, the definition of the derivative is given by the limit

f ′(x) = lim
h→0

f(x + h) − f(x)

h

Using ∆x in place of h this becomes

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)

h

For small values of ∆x, we get a good approximation

f ′(x) ≈
f(x + ∆x) − f(x)

h

If we solve this equation for f(x + ∆x) we get the estimate

f(x + ∆x) ≈ f(x) + f ′(x)∆x

Example If we know the derivative of a function, this can be used to approximate values of a function.
For example, we can estimate the height, h(t), of an object using its vertical velocity. Suppose, that at t = 0
an object has height of 10 meters and the objects vertical velocity is v(t) = sin(t2).

Note: for other functions v(t) its possible to use integral calculus to solve for h(t) exactly. This is not
straightforward for v(t) = sin(t2).

We know that h′(t) = v(t) and can use this to derive an update rule to estimate the height of the object.

h(t + ∆t) ≈ h(t) + h′(t)∆t

= h(t) + v(t)∆t

We will let {ti} be the times that we are estimating the height at and hi ≈ h(ti) be the approximation
of the height at time ti. We will use the initial time 0 and height 10 to give initial values

t1 = 0

h1 = 10

After each iteration ti+1 = ti + ∆t and

hi+1 ≈ h(ti+1)

= h(ti + ∆t)

≈ h(ti) + v(ti)∆t

≈ hi + v(ti)∆t

Combining everything we get the following iterative solution:

t1 = 0

h1 = 10

ti+1 = ti + ∆t

hi+1 = hi + v(ti)∆t

1

If we use ∆t = .1 second and estimate the heights in the first 15 seconds using the velocity function
v(t) = sin(t2), we can use the following Matlab code:

dt = . 1 ;
numbe r o f i t e r a t i on s = 15 / dt ;

% Create arrays to s t o r e the t imes and h e i g h t s

t = zeros (1 , numbe r o f i t e r a t i on s +1)
h = zeros (1 , numbe r o f i t e r a t i on s +1)

t (1) = 0 ;
h (1) = 10 ;
for i =1: numbe r o f i t e r a t i on s

t (i +1) = t (i) + dt ;
h(i +1) = h(i) + sin (t (i)ˆ2)∗ dt ;

end

We can plot this solution using the command plot(t, h). More accurate solution can be found using smaller
values of ∆t. Below are the plots of height as a function of time with dt = 1, .1 and .01.

0 5 10 15
12.5

13

13.5

14

14.5

15

15.5

16

0 5 10 15
15

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16

0 5 10 15
15

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16

Notice that the graph gets smoother and more accurate with smaller time steps. Too many time steps take
much more time and gets less additional accuracy.

2 Differential Equations: Population Model

The previous example can be thought of as a solution the the differential equation dh
dt

= sin(t2). If you
are not familiar with a differential equation, it is an equation involving a function and its derivatives must
satisfy.

Another example is the equation for population growth. Suppose R(t) is the population of rabbits. If
there an excess of food then the population of rabbits will grow and if there is not enough food the population
will drop. The rate of change in the population can be modeled by the differential equation

dR

dt
= kR(C − R)

where the constant k controls how quickly the population changes and the constant C, called the carrying
capacity, is the maximum sustained rabbit population. If 0 < R < C then dR

dt
> 0 so the rabbit population

increases. And if R > C then dR
dt

< 0 and the rabbit population decreases.

Suppose that R(t) is the population of rabbits (in thousands) in the year t and that dR
dt

= .1R(1 − R
C

).
Suppose there are 3500 rabbits in January of 2000 and we want to estimate the population over the first 50
years of the 21st century. We get the update rules:

t1 = 2000

R1 = 3500

2

ti+1 = ti + ∆t

Ri+1 = Ri + kRi

(

1 −
Ri

C

)

= Ri + .1Ri

(

1 −
Ri

10000

)

In Matlab we get the following script:

% Do t imes t ep s o f 1 day

dt = 1/365
numbe r o f i t e r a t i on s = 50 / dt

% Create arrays to s t o r e the t imes and popu l a t i on s

t = zeros (1 , numbe r o f i t e r a t i on s +1)
R = zeros (1 , numbe r o f i t e r a t i on s +1)

t (1) = 2000
R(1) = 3500
for i =1: numbe r o f i t e r a t i on s

t (i +1) = t (i) + dt
R(i +1) = R(i) + . 1 ∗ R(i) ∗ (1 − R(i)/10) ∗ dt

end

Below are the graphs with initial rabbit population of 3,500 and 15,000.

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050
0

5000

10000

15000

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050
0

5000

10000

15000

Systems of Differential Equations: Predator-Prey A more realistic scenario for rabbits in the forest
involve a predator, foxes. We can modify the differential equation for dR

dT
to take the fox population, F , into

account. And add a new equation for how the fox population is affected by rabbits. Notice that if the fox
population is zero then this simplifies to the previous equation.

dR

dt
= .04R

(

1 −
R

10000

)

− .0005RF

dF

dt
= .00005RF − .2F

The new terms involving the product RF incorporate the fact that the presence of both rabbits and foxes
increases the fox population (since there is food available) and decreases the rabbit population. And the
term −.2F in the second equation account for natural death of the foxes.

There are now two dependent variables, R and F , to take into account. The update rules at each step
become:

ti+1 = ti + ∆t

3

Ri+1 = Ri + .1Ri

(

1 −
Ri

10000

)

∆t

Fi+1 = Fi + (.00005RiFi − .2Fi)∆t

The Matlab code to simulate what happens when you begin with 10,000 rabbits and 100 foxes is below:

dt = . 0 1 ;
n = 1000/ dt ;

t = zeros (1 , n+1);
R = zeros (1 , n+1);
F = zeros (1 , n+1);

t (1) = 0 ;
R(1) = 10000;
F(1) = 100 ;

for i =1:n
t (i +1) = t (i) + dt ;
R(i +1) = R(i) + (. 04∗R(i)∗(1−R(i)/10000) − . 0005∗R(i)∗F(i))∗ dt ;
F(i +1) = F(i) + (.00005∗R(i)∗F(i) − . 2∗F(i))∗ dt ;

end

Below are three graphs: R as a function of t, F as a function of t and the trajectory of population of R and
F.

0 50 100 150 200 250 300 350 400 450 500
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

t

R

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

t

F

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350

400

R

F

Second Order Equation: Pulling a Bus When pulling an object friction pulls in the opposite direction.
When moving at a velocity v the resistive force of friction is equal to kmv where k is the friction coefficient
and m is the mass of the object. In strongmen competitions they pull large objects, like buses, down the
street. Suppose the strongman pulls the bus with a constant force p then to total force is F = p − kmv.
Using the fact that F = ma, we can solve for acceleration and get the differential equation

a =
dx2

dt2
=

dx

dt
=

F

m
=

p − kmv

m

We can use this formula for acceleration to estimate velocity. The estimated velocity can then be used to
estimate position. The update rules would be:

ti+1 = ti + ∆t

vi+1 = vi +
p − kmvi

m
∆t

xi+1 = xi + vi∆t

4

Suppose that the mass of the bus is 4,500 kg, the strongman pulls with a force of 500 N and the coefficient
of friction is .04 N/(m/s) and that the bus is stationary. Graph the position of the bus as he pulls it for 30
seconds. The Matlab code to do this is below:

dt = . 1 ;
n = 30/ dt ;

m = 4500 ;
k = . 0 4 ;
p = 500 ;

t = zeros (1 , n+1);
v = zeros (1 , n+1);
x = zeros (1 , n+1);

for i =1:n
t (i +1) = t (i) + dt ;
v (i +1) = v(i) + (p − k∗m∗v (i))/m ∗ dt ;
x (i +1) = x(i) + v (i) ∗ dt ;

end

plot (t , x)

System of Second Order Equations: Double Springs We can use the same techniques to deal with
multiple object. Suppose two cars are connected by springs to each other and the wall as below.

We will assume that there is not friction when the cars move and the wall is immovable. So the only forces
involved will be from the spring. The force exerted by a spring is depends on three factors: its resting length
(how long it would be if no forces we applied), how long it currently is and its spring constant. A spring
with current length x, resting length l and spring constant k would push outward with a force of k(l − x).
So when the spring is pulled longer then its resting length is pulls back inward and when its shorter than its
resting length is pushes outward.

Suppose x1 and x2 are the positions of the left end of the first car and second, respectively and the
relevant constants are

Mass of 1st car m1 10 kg
Width of 1st car w1 .15 m
Resting length of 1st spring l1 .10 m
Spring constant of 1st spring k1 5 N/m
Mass of 2nd car m2 15 kg
Width of 2nd car w2 .15 m
Resting length of 2nd spring l2 .07 m
Spring constant of 2nd spring k2 2 N/m

5

0 x1 x2

w1

m1 m2

w2k1 k2
l1 l2

The length of the first spring is x1 so the outward force it exerts is equal to F1 = k1(l1 −x1). The second
spring’s length is x2 − x1 − w1, so exerts an outward force of k2(l2 − x2 + x2 + w1).

Assume that initially both cars are motionless and pushed as far left as possible. (The first car is against
the wall and the second pushed against the first.) We want to graph what happens for five minutes after the
cars start moving.

In our program, we will use the array t, v1, x1, v2, x2 to keep track of time, velocity of the 1st car, position
of the 1st car, velocity of the 2nd car and position of the 2nd car, respectively. The Matlab script to do this
is:

dt = . 0 0 1 ;
n = 300/ dt ;

m1 = 10 ;
w1 = . 1 5 ;
l 1 = . 1 0 ;
k1 = 5 ;

m2 = 15 ;
w2 = . 1 5 ;
l 2 = . 0 7 ;
k2 = 2 ;

t = zeros (1 , n+1);
v1 = zeros (1 , n+1);
x1 = zeros (1 , n+1);
v2 = zeros (1 , n+1);
x2 = zeros (1 , n+1);

t (1) = 0 ;
v1 (1) = 0 ;
x1 (1) = 0 ;
v2 (1) = 0 ;
x2 (1) = w1 ;

for i =1:n
F1 = k1 ∗ (l 1 − x1 (i)) ;
F2 = k2 ∗ (l 2 − x2 (i) + x1 (i) + w1) ;

t (i +1) = t (i) + dt ;

v1 (i +1) = v1 (i) + (F1 − F2)/m1 ∗ dt ;
x1 (i +1) = x1 (i) + v1 (i) ∗ dt ;

6

v2 (i +1) = v2 (i) + F2/m2 ∗ dt ;
x2 (i +1) = x2 (i) + v2 (i) ∗ dt ;

end

plot (t , x1 , t , x2)
legend (’Car 1 ’ , ’ Car 2 ’)

Notice in the code that the acceleration for the 1st car is (F1 - F2)/m1); this is because the first spring
pushes the car to the right and the second pushes it to the left. The second car is only pushed right by the
second spring so its acceleration is F2/m2. Also, note that dt is set to be .001 seconds. With such a rapidly
moving object, such a small time step was necessary.

Below is the graph of the position:

0 50 100 150 200 250 300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Car 1
Car 2

Estimating Derivatives: Finding Velocity from Position Suppose we want to estimate the derivative

of the function f(x). The definition of the derivative says that f ′(x) = limh→0
f(x+h)−f(x)

h
. So estimate this

we can plug in a small value for h. For example, if we have regularly spaced data in an array, use h = ∆x.

So f ′(x) ≈ f(x+∆x)−f(x)
∆x

. This is called a forward difference. Basically, is approximates the derivative as the
average rate of change in the interval after x.

If we have an array x that represents the positions of an object taken every ∆t seconds, the we can use
this to approximate the derivative. This derivative is the velocity of the object and we can create an array
with this data using the formula v(i) = (x(i+1) − x(i)) / dt. Below is a loop implementation (assuming
that the array x has n entries:

v = zeros (1 , n) ;
for i =1:n−1

v (i) = (x (i +1) − x (i)) / dt ;
end

Note that the loop stops at n−1. If the loop continued to n then is would be asked to find x(n+1) which is
past the end of the array.

An alternate way to calculate v is using array operations

v = (x (2 : n) − x (1 : n−1)) / dt ;

7

In either case notice that v has one less entries than x. This is because there is no time interval after the
last data point to use to approximate velocity.

It is also possible to approximate the derivative using the interval immediately prior to the point, called
a backwards difference. This plugs in h = −∆x into the derivative formula and gives the estimate:

f ′(x) ≈
f(x − ∆x) − f(x)

−∆x
=

f(x) − f(x − ∆x)

∆x

In Matlab this can be used to estimate the derivative using a loop

v = zeros (1 , n) ;
for i =2:n

v (i) = (x (i) − x (i −1)) / dt ;
end

or array operations

v (2 : n) = (x (2 : n) − x (1 : n−1)) / dt ;

Notice that both fail to approximate the velocity at index 1, the beginning.
Both approximations miss a point. And the choice of using the interval immediately before or after seems

arbitrary. An improved version that has less error is using the central difference:

f ′(x) ≈
f(x + ∆x) − f(x − ∆x)

2∆x

which is just the average of the forward and backward differences. This estimate has less error, but that is
hard to show without doing a lot of calculus.

This formula cannot be used to estimate the derivatives at the beginning or end of the time interval, but
we can use forward and backward differences, respectively, to do these estimates. Using a loop we get the
following Matlab routine:

v = zeros (1 , n) ;
v (1) = (x (2) − x (1)) / dt ;
for i =2:n−1

v (i) = (x (i +1) − x (i −1)) / (2∗ dt) ;
end

v (n) = (x (n) − x (n−1) / dt ;

Or using array operations:

v = zeros (1 , n) ;
v (1) = (x (2) − x (1)) / dt ;
v (2 : n−1) = (x (3 : n) − x (1 : n−2)) / dt ;
v (n) = (x (n) − x (n−1) / dt ;

Second derivatives: Acceleration from Velocity We can calculate the second derivative just by
applying the above procedure twice. For example, to calculate acceleration we could do the following:

v = zeros (1 , n) ;
v (1) = (x (2) − x (1)) / dt ;
v (2 : n−1) = (x (3 : n) − x (1 : n−2)) / dt ;
v (n) = (x (n) − x (n−1) / dt ;

a = zeros (1 , n) ;
a (1) = (v (2) − v (1)) / dt ;
a (2 : n−1) = (v (3 : n) − v (1 : n−2)) / dt ;
a (n) = (v (n) − v (n−1) / dt ;

8

Or we could try to do this directly using the central difference formula:

f ′′(x) ≈
f ′(x + ∆x) − f ′(x − ∆x)

2∆x

≈
f(x+2∆x)−f(x)

2∆x
− f(x)−f(x−2∆x)

2∆x

2∆x

=
f(x + 2∆x) − 2f(x) + f(x − 2∆x

4∆x2

This formula only uses alternate values and can be improved to

f ′′(x) ≈
f(x + ∆x) − 2f(x) + f(x − ∆x)

∆x2

. This is the central difference approximation to the second derivative. Notice that this will not work at either
end, but we can use backward and forward differences to get these approximations. These approximations
are:

f ′′(x) ≈
f(x + 2∆x) − 2f(x + ∆x) + f(x)

∆x2

f ′′(x) ≈
f(x) − 2f(x − ∆x) + f(x − 2∆x)

∆x2

The Matlab code to calculate the acceleration from position is:

a = zeros (1 , n) ;
a (1) = (x (3) − 2∗x (2) + x (1)) / dt ˆ2 ;
a (2 : n−1) = (x (3 : n−1) − 2∗x (2 : n−1) + x (1 : n−2)) / (dt ˆ 2) ;
a (n) = (x (n) − 2∗x (n−1) + x(n−2)) / dt ˆ2 ;

9

